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Abstract. This contribution presents a review of our present theoretical as well as experimental knowledge
of different fluctuation observables relevant to nuclear multifragmentation. The possible connection between
the presence of a fluctuation peak and the occurrence of a phase transition or a critical phenomenon is
critically analyzed. Many different phenomena can lead both to the creation and to the suppression of
a fluctuation peak. In particular, the role of constraints due to conservation laws and to data sorting is
shown to be essential. From the experimental point of view, a comparison of the available fragmentation
data reveals that there is a good agreement between different data sets of basic fluctuation observables, if
the fragmenting source is of comparable size. This compatibility suggests that the fragmentation process is
largely independent of the reaction mechanism (central vs. peripheral collisions, symmetric vs. asymmetric
systems, light ions vs. heavy-ion–induced reactions). Configurational energy fluctuations, that may give
important information on the heat capacity of the fragmenting system at the freeze-out stage, are not fully
compatible among different data sets and require further analysis to properly account for Coulomb effects
and secondary decays. Some basic theoretical questions, concerning the interplay between the dynamics
of the collision and the fragmentation process, and the cluster definition in dense and hot media, are still
open and are addressed at the end of the paper. A comparison with realistic models and/or a quantitative
analysis of the fluctuation properties will be needed to clarify in the next future the nature of the transition
observed from compound nucleus evaporation to multi-fragment production.

PACS. 24.10.Pa Thermal and statistical models – 24.60.Ky Fluctuation phenomena – 25.70.Pq Multi-
fragment emission and correlations – 68.35.Rh Phase transitions and critical phenomena

1 Fluctuations and phase transitions

Since the first inclusive heavy-ion experiments, multifrag-
mentation has been tentatively associated with a phase
transition or a critical phenomenon. This expectation
was triggered by the first pioneering theoretical studies
of the nuclear phase diagram [1] which contains a coex-
istence region delimited, at each temperature below an
upper critical value, by two critical points at different
asymmetries [2,3].

Even more important, the first exclusive multifragmen-
tation studies have shown that multifragmentation is a
threshold process occurring at a relatively well-defined de-
posited energy [4–7]. The wide variation of possible frag-
ment partitions naturally leads to important fluctuations
of the associated partition sizes and energies.

Different observables have been proposed to measure
such fluctuations. Using the general definition of the n-th
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moment as
Mn =

∑

Zi 6=Zmax

Zn
i · ni(Zi), (1)

the variance of the charge distribution is measured by the
second moment M2 or by the normalized quantity [8]

γ2 =
M2M0

M2
1

. (2)

The root mean-square fluctuation per particle

σm =

√

〈(Zm/Z0 − 〈Zm/Z0〉)
2
〉 (3)

of the distribution of the largest fragment Zm detected in
each event completes the information. We will also con-
sider the total fluctuation

Σ2
m = 〈Z0〉σ

2
m (4)

and the fluctuation

σ2
k = 〈(Ep/A0 − 〈Ep/A0〉)

2
〉 (5)
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Fig. 1. Second moment of the size distribution (see [10] for a
precise definition) as a function of the average cluster multi-
plicity for the three-dimensional percolation model for different
lattice sizes. The figure is taken from [8].

of the configurational energy per particle associated with
each fragment partition (k)

E(k)
p =

mk
∑

i=1

(BE)i + α2
mk
∑

i,j=1

ZiZj

〈|ri − rj |〉
, (6)

where mk is the multiplicity of event k, BE is the ground-
state binding energy of each fragment, and 〈|ri − rj |〉 is
the average interfragment distance at the formation time.
The quantities A0, Z0 in eqs. (3), (5) represent the re-
constructed charge and mass of the fragmenting system,
Z0 =

∑mk

i=1 Zi, A0 =
∑mk

i=1Ai.
In a simple statistical picture the fluctuation of any

observable can be related to the associated generalized
susceptibility by

χ = −
∂〈A〉

∂λ
= 〈A2〉 − 〈A〉2, (7)

where λ is the intensive variable associated with the
generic observable A. Since the intensive variable asso-
ciated with a particle density N/V is the susceptibility
χ = ∂〈N〉/∂µ, then the large variance of the charge distri-
bution observed in multifragmentation experiments could
be connected to the diverging critical point fluctuation
which would signal a diverging susceptibility and a diverg-
ing density correlation length. The apparent self-similar
behavior and scaling properties of fragment yields [9] tend
to support this intuitive picture.

1.1 Finite-size effects

Many different effects can, however, blur this simple con-
nection. First of all, since fragmenting sources cannot ex-

ceed a few hundred nucleons, we have certainly to expect
finite-size rounding effects, which smooth the fluctuation
signal [8]. Not only the transition point is expected to be
loosely defined and shifted in the finite system as shown in
the three-dimensional percolation model in fig. 1, but also
the signal is qualitatively the same for a critical point,
a first-order transition or even a continuous change or
crossover.
Finite-size effects have other consequences on the dis-

tribution than the simple smoothing of the transition. It
has been shown in different model calculations that the
presence of conservation constraints as well as the use
of different event sorting procedures can sensibly distort
the fluctuation observables. To give a simple example, the
presence of a peak in the largest fragment’s size fluctuation
as a function of the energy deposit is trivially produced by
the baryon number conservation constraint which forces
this fluctuation to decrease with increasing average multi-
plicity [9]. In the case of a genuine critical behavior as for
the percolation model, the fact of sorting events accord-
ing to the percolation parameter p or according to some
other correlated observable, as for instance the total clus-
ter multiplicity, modifies [9,5] the behavior of m2, γ2, and
all other related moments [10] measuring the fluctuation
properties of the system. All these effects can be under-
stood in the general framework of the non-equivalence of
statistical ensembles for finite systems, which we will dis-
cuss in the next section.

1.2 Thermal invariance properties

Another problem when trying to connect a fluctuation
peak to a phase transition or a critical behavior in a fi-
nite system is given by the possible existence of thermo-
dynamic ambiguities. It has been observed by different
independent works that in the framework of equilibrium
fragmentation models the fluctuation behavior is quali-
tatively independent of the break-up density [11–14]. An
example is given in fig. 2, which gives the second moment
of the charge (S2 =M2−M

2
1 ) and of the energy (Cv) dis-

tribution as a function of temperature in the lattice gas
model for different break-up densities in the subcritical
regime.
A peak in the fluctuation observables can be seen at

all densities, at a temperature which is systematically be-
low the critical temperature of the system and close to the
first-order transition temperature in the thermodynamic
limit. A similar behavior has been observed in different
fluctuation observables and also at supercritical densities
along the Kertesz percolation line, where the system does
not present any phase transition. Table 1 gives, as a func-
tion of the lattice size, the inverse temperature at which
the variable S2 shows a maximum in the three-dimensional
IMFM model [12] at different densities. As a general state-
ment, the fluctuation peak as well as the global scaling
properties of the size distribution [14,15] in these models
can be found along a curve in the T (ρ) diagram passing
through the thermodynamic critical point but extending
in the subcritical as well as supercritical region [16]. The
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Fig. 2. Second moment of the charge (S2) and of the energy
(Cv) distribution as a function of temperature in the lattice
gas model for different densities for a system of linear dimen-
sion L = 7. Arrows: first-order transition temperature in the
thermodynamic limit. The figure is taken from ref. [13].

subcritical behavior can be understood as a finite-size ef-
fect, when the correlation length, close to the first-order
transition point, becomes comparable to the linear size
of the system, while the supercritical behavior is linked
to the definition of clusters in dense and hot media [16].
For the subcritical region, a clusterization algorithm has
been suggested to eliminate such behaviors in Ising simula-
tions [17]. The possible pertinence of all these observations
to experimental data is still a subject of debate, and essen-
tially depends on the relationship between the measured
clusters and the cluster definitions of the models.
Last but not least, the presence of different time scales

in the reaction [18,19] and the dynamics of the fragmen-
tation process may have important effects in the quantita-
tive value of charge partition fluctuations [20], as we will
discuss in the last section.
For all these reasons, it is clear that the well-

documented presence of a fluctuation peak in the mea-
sured charge distributions [7] cannot be taken as such as
a proof of a critical behavior and/or phase transition. In

Table 1. Inverse temperature at which the second moment
S2 = M2 − M2

1 is maximal for different densities and lat-
tice sizes in the three-dimensional IMFM model. Taken from
ref. [12].

L βc(ρ = 0.3) βc(ρ = 0.5) βc(ρ = 0.7)

10 0.2560(5) 0.225(3) 0.194(2)
16 0.2440(2) 0.2230(5) 0.1984(2)
20 0.23960(10) 0.2227(4) 0.1990(6)
24 0.2367(3) 0.2227(2) 0.2005(6)

order to connect the fluctuation behaviour to a phase tran-
sition and to conclude on its order, it is indispensable to
compare with models and/or to quantify the fluctuation
peak.

2 Theory

2.1 Fluctuations and constraints

It is clear that fluctuations on a given observable A will
be suppressed if a constraint is applied to a variable cor-
related to A. This trivial fact has a deep thermodynamic
meaning and is linked to the non-equivalence of statis-
tical ensembles in finite systems [21]. Indeed, the basic
statistical relation between a fluctuation and the associ-
ated susceptibility eq. (7) is only valid in the ensemble in
which the fluctuations of A are such as to maximize the
total entropy under the constraint of 〈A〉 (“canonical” en-
semble). The thermodynamics in the ensemble where the
generic observable A is controlled event by event (“mi-
crocanonical” ensemble), or in the ensemble where σA is
externally fixed (“Gaussian” ensemble [22]) is a perfectly
defined statistical problem, but the thermodynamic rela-
tionships have to be explicitly worked out [23]. As an ex-
ample we show in fig. 3 the correlation between the size of
the largest cluster Abig and the total energy in the isobar
lattice gas model [23] at the transition temperature. The
presence of two energy solutions at the same temperature
and pressure clearly shows that the transition is in this
case first order [24]. The Abig fluctuation properties are
very different in the canonical ensemble (left part) and in
the microcanonical ensemble (right part) at the same (av-
erage) total energy. Because of the important correlation
between the total energy and the fragmentation partition,
fragment size fluctuations can be compared only for sam-
ples with comparable widths of the energy distribution.
From the experimental viewpoint, different constraints

apply to fragmentation data and have to be taken into
account. Apart from the sorting conditions [7], the col-
lisional dynamics can also give important constraints to
the fragmentation pattern (e.g. flows, deformation in r-
space and p-space). This means that fluctuations have to
be compared with calculations performed in the statisti-
cal ensemble corresponding to the pertinent experimental
constraints [25].
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Fig. 3. Center: correlation between the largest fragment’s size and the total energy in the isobar lattice gas model close to the
transition temperature, for a system of 216 particles. Left side: projection over the Abig direction. Right side: same as the left
side, but only events within a narrow energy interval around the average energy have been retained.

2.2 Fluctuations and susceptibilities

In the last subsection we have stated that a connection be-
tween a fluctuation and the associated susceptibility can
always be in principle worked out if the constraints acting
on the observable are known. In the case of sharp con-
straints (e.g. fixed total mass, charge, deposited energy),
the connection between the fluctuation on a variable cor-
related to the constraint (e.g. size or charge of the largest
fragment, configurational energy) and the associated sus-
ceptibility are in many cases analytical [26–28]. If a con-
servation constraint A = A1 + A2 = const applies and
the system can be split into two statistically independent
components such that W (A) = W (A1)W (A2), then the
partial fluctuations are linked to the total susceptibility
by

χ1

χ
= 1−

σ2
1

σ2
ref

, (8)

where χ−1
i = ∂2

Ai
Wi, σ

2
ref is the fluctuation of A1 in the

ensemble where only the average value 〈A〉 is constrained,
and we have approximated the distribution of A1 with
a Gaussian [23]. The case of the total energy constraint
has been particularly studied in the literature. Indeed the
total energy deposit can be (approximately [29]) mea-
sured event by event in 4π experiments, allowing to exper-
imentally construct a microcanonical ensemble by sorting.
For classical systems with momentum-independent inter-
actions the potential energy fluctuation σ2

I at a fixed total
energy is linked to the total microcanonical heat capacity
by

Ck

C
= 1−

σ2
k

σ2
can

, (9)

where Ck, C are the kinetic and total heat capacity,
σ2

k = σ2
I and σ

2
can = ckT

2 is the kinetic energy fluctua-
tion in the canonical ensemble. Apart from the microstate
equi-probability inherent to all statistical calculations, the
above formula is obtained in the saddle point approxima-
tion for the partial energy distributions. The contribu-
tion of non-Gaussian tails can be also analytically worked

Fig. 4. Temperature, normalized binding energy fluctuation
and heat capacity in the microcanonical isobar lattice gas
model as a function of the total energy for a system of 108
particles. In the lower panel the heat capacity estimated from
fluctuations via eq. (9) (dots) is compared to the exact ex-
pression from the entropy curvature (line). The figure is taken
from [30].

out [27] and has been found to be negligible in all theo-
retical as well as experimental data samples analyzed so
far [23]. An exemple of the quality of the approximation is
given in fig. 4 which gives the temperature, normalized po-
tential energy fluctuation and heat capacity in the isobar
lattice gas model for a system of 108 particles.



F. Gulminelli and M. D’Agostino: Fluctuations of fragment observables 257

Table 2. Maximum γ2 (columns 2–5) and σm (columns 6, 7)
values measured in the break-up of an Au system within differ-
ent data sets sorted in Zbound, total multiplicity (m) or calori-
metric excitation energy (ε∗). Different values for the same
case denote different bombarding energies. Values taken from
refs. [5,9,31–35].

γ2 [5] [31–33] [34,9] [35] σm [34] [35]

Zbound 1.4 1.3
m 1.85 3.2 2.23 0.15

1.85
2.5

ε∗ 3.7 2.5 0.12 0.14

3 Experiment

3.1 Effect of the sorting variable

In this section we turn to compare different sets of exper-
imental data available in the literature. Special attention
has been paid by different collaborations to the largest
fragment fluctuation σm eq. (3) and to the γ2 observable
eq. (2) [5,31–35]. For all data sets of comparable total size
these observables, as well as the others we will show in the
next subsections, show a well-defined peak at comparable
values of the chosen sorting variable. This is an impor-
tant and non-trivial result considering that data are taken
with different apparata and the multifragmenting systems
are obtained with very different reaction mechanisms. The
effect of the sorting variable is explored in table 2, that
gives the maximum value of γ2 and σm with different data
sets sorted in bins of the total measured bound charge
Zbound, total measured charged particles multiplicity m,
or calorimetric excitation energy [29]. Even if the system-
atics should certainly be completed and errors should def-
initely be evaluated, we can observe from table 2 that
different data sets show a reasonable agreement when the
same sorting is employed.
We can also note that a higher γ2 is systematically

obtained when data are analyzed in bins of total charge
multiplicity, with respect to a sorting in Zbound. This can
be qualitatively understood if we recall that γ2 measures
the variance of the charge bound in fragments, and this
quantity is obviously strongly correlated with Zbound and
loosely correlated with m. The calorimetric excitation en-
ergy sorting leads to results comparable to the multiplicity
sorting. The value of γ2 is slightly increased, which may
be explained by a reduced correlation of ε∗ with respect
to m with the total fragment charge, since the excita-
tion energy contains the extra information of the kinetic
energy of the fragments. However, the effect goes in the
opposite direction as the fluctuation of Zm is concerned.
A detailed study of the correlation coefficient between the
considered observables and the sorting variables is needed
to fully understand these trends. It is also possible that
the fluctuations obtained with these two sortings may be
compatible within error bars, which stresses the impor-
tance of an analysis of errors.

Table 3. Maximum γ2, Σ
2

m and σm values measured within
different data sets for various system sizes Z0. Different values
for the same case denote different targets. Values taken from
refs. [34,36,35].

〈Z0〉 γ2 [34,36,35] Σ2

m [34,36,35] σm [34,36,35]

76 2.5 1.49 0.14
59 3.7 0.85 0.12
43 2.4 0.73 0.13
27 1.75 0.39 0.125
16 1.19 0.22 0.114

1.17 0.22 0.114
1.16 0.22 0.114

The fluctuation values appear to be largely indepen-
dent of the reaction mechanism and incident energy [5,
31,33]. The only exception is the value γ2 ≈ 2.5 obtained
from emulsion data in ref. [32], which is significantly higher
than the values obtained at the other bombarding energies
for the same system. Such anomaly might be due to the
presence of fission events that have been excluded in the
other analyses [31,33]. The independence on the incident
energy tends to show that the fragmentation process is
essentially statistical.

3.2 Effect of the system size

The effect of the system size is further analyzed in ta-
ble 3. All presented data are sorted in bins of calorimetric
excitation energy.
The fluctuation properties of quasi-projectile decay

appear to be largely independent of the target. This
well-known behavior at relativistic energy [5] appears con-
firmed in the case of the NIMROD experiment [36] which
was performed with a beam energy as low as 47MeV/A.
This suggests that a quasi-projectile emission source can
be extracted [7] in spite of the important midrapidity con-
tribution in the Fermi energy regime [19].
From table 3 we can also see that Σ2

m decrease mono-
tonically with the system mass. The evolution with the
system size, at least in the size range analyzed, appears
as a simple scaling behavior as shown by the fact that the
normalization to the source size in σm makes the fluctu-
ation almost independent of the size. Similar conclusions
can be drawn concerning the γ2 observable, even if the be-
havior for the heaviest sources is less clear. This interesting
scaling behavior should be confirmed using hyperscaling
techniques [10].
To conclude, we have seen that fluctuations can vary

by a factor of two when changing the sorting variable.
This stresses the need of confronting the experimental
data with statistical predictions containing the same con-
straints, i.e. performed in the adapted statistical ensem-
ble. Interesting enough, when the same sorting is adopted
the different available data sets agree within ≈ 15%, both
in the value of the peak and in the position where the
peak is observed. More data are needed to confirm these
trends.
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Fig. 5. Left part: percentage of secondarily emitted light charged particles taken from correlation function measurements (see
ref. [37]). Right part: total measured fragment kinetic energy (points) compared with Coulomb trajectory calculations where
the volume is changed from 6V0 to 3V0. Both quantities are plotted as a function of the calorimetric excitation energy. The
figure is taken from [38].

3.3 Configurational energy fluctuations

One of the most interesting aspects of studying fluctua-
tion observables, is their possible connection with a sus-
ceptibility or a heat capacity via eq. (9). Configurational
energy fluctuations have been studied at length by the
Multics Collaboration [38–40] and by the INDRA Collab-
oration [38,41–43] on Au sources. The observable used in
these studies is an estimation of the energy stored in the
configurational degrees of freedom at the time of fragment
formation, defined as follows:

EI =

Nimf
∑

i=1

Q (Zp
i , A

p
i )

+
∑

i=n,p,d,t,3He,4He

Q (Zi, Ai)M
p
i (10)

+Vcoul ({Z
p
i } , VFO) ,

where Q indicates the mass defects and Vcoul the Coulomb
energy. The measured fragment charges Zi and lcp multi-
plicities Mi are corrected in each event to approximately
account for secondary decay,

Zp
i = Zi + 〈M

ev
H + 2Mev

He〉
Zi

∑Nimf

i=1 Zi

, (11)

Mp
i = Mi − 〈M

ev
i 〉, (12)

where 〈Mev
i 〉 is the estimated multiplicity of secondary

emitted light charged particles for each calorimetric exci-
tation energy bin.
Three quantities need to be estimated in each excita-

tion energy bin to compute EI :

1) The freeze-out volume VFO which determines the total
Coulomb energy. Its average value is deduced from the
measured fragment kinetic energies through Coulomb
trajectories calculations (see fig. 5, right part).

2) The average multiplicities of secondarily emitted par-
ticles 〈Mev

lcp〉 to account for side-feeding effects. They

Fig. 6. Left side: normalized fluctuation of EI and estimated
Ck (see text) as a function of the calorimetric excitation energy.
Grey zone: peripheral 35AMeV Au + Au collisions. Symbols:
central Au + C, Au + Cu, Au + Au at 25 and 35AMeV. Right
side: heat capacity from eq. (9). The figure is taken from [40].

are deduced from fragment-particle correlation func-
tions (see fig. 5, left part).

3) The isotopic content Ap
i /Z

p
i of primary fragments. It

is assumed that it is equal to the isotopic content of
the fragmenting system. This quantity allows in turn
to determine the number of free neutrons at freeze-out
from baryon number conservation.

A general protocol has been proposed to minimize the
spurious fluctuations due to the implementation of this
missing information [38]. The resulting fluctuation of EI

σ2
I = σ2

k is shown for different Multics data in fig. 6.
The temperature has been estimated alternatively using
isotopic thermometers or solving the kinetic equation of
state and comes out to be in good agreement [40] with the
general temperature systematics [44] (around 4.5MeV in
the fragmentation region). Similar to the other fluctua-
tion observables, configurational energy fluctuations show
a well-pronounced peak at an excitation energy around
5AMeV. This general feature is apparent in Multics [40],
INDRA [43], Isis [45] and NIMROD [36] data. The only
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Fig. 7. Normalized fluctuation and kinetic heat capacity
(dashed lines) for 32AMeV Xe + Sn central collisions mea-
sured by the INDRA Collaboration as a function of the calori-
metric excitation energy with two different hypothesis on the
freeze-out volume. The histogram gives the event distribution.
The figure is taken from [38,41].

exception is EOS data [46] where this fluctuation appears
monotonically decreasing.

In the hypothesis of thermal equilibrium at the freeze-
out configuration this fluctuation is a measure of the heat
capacity according to eq. (9). The value expected for this
fluctuation in the canonical ensemble can be written as
σ2

can = ckT
2. The kinetic heat capacity ck is calculated

from the measured fragment yields [38]. We can see that
the fluctuation peak overcomes the upper classical limit
ck = 3/2 suggesting a negative heat capacity as expected
in a first-order phase transition analyzed in the micro-
canonical ensemble [47,48].

The same analysis performed on INDRA data of cen-
tral Xe + Sn collisions at different bombarding energies
leads to compatible temperatures and volumes and a fluc-
tuation estimation that agrees within 25% with the pre-
sented Multics results [38], as shown for the 32AMeV data
in fig. 7 (upper part). In the absence of isotopic resolution
for fragments, Coulomb repulsion cannot be distinguished
from a radial collective expansion due to a possible ini-
tial compression. If an important radial flow component
is assumed for these central collisions, data can also be
compatible with a bigger freeze-out volume (lower part
of the figure) leading to a shift of the abnormal fluctu-
ation behavior towards lower energy. This volume/flow
ambiguity in central collisions can only be solved with
third-generation multidetectors [49].

INDRA data on a source of the same size as the
Au quasi-projectile analyzed by the Multics Collabora-
tion lead to a fluctuation measurement about 40% lower,
see fig. 8. This difference is tentatively explained as an

Fig. 8. Normalized fluctuation and kinetic heat capacity
(stars) for 80AMeV Au + Au peripheral collisions measured
by the INDRA and ALADIN Collaborations as a function
of the calorimetric excitation energy, for all quasi-projectile
events (left side) and after subtraction of events elongated
along the beam axis (right side). The figure is taken from [43].

Fig. 9. Normalized fluctuation and kinetic heat capacity for
47AMeV argon quasi-projectiles on different targets measured
by the NIMROD Collaboration as a function of the calorimetric
excitation energy. The figure is taken from [36].

effect of emission from the neck which leads to a reduced
occupation of the available phase space [43].

Recent NIMROD data [36] on the fragmentation of a
much lighter system show a similar value for the energy
corresponding to the fluctuation peak, but an absolute
value for the fluctuation of a factor 10 lower than for Mul-
tics data, as shown in fig. 9. If we consider the global
fluctuation 〈A0〉σ

2
k without the normalization to the esti-

mated temperature, this factor is reduced to about a fac-
tor 4. These results go in the same direction as the gen-
eral behavior of Σ2

m that we have analyzed in sect. 3.2.
Recall that the fluctuation of the biggest fragment for
the quasi-Au source [35] is a factor 6.8 higher than for
the quasi-Ar one [36]. This fluctuation reduction seems
then to be a general feature of light-system fragmenta-
tion and has been tentatively explained as an effect of the
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Fig. 10. Phase diagram of 64 Lennard-Jones particles confined
in a box. Filled triangles give the coexistence border. Isocon-
tours give values of normalized fluctuations σ2

k/σ
2

can calculated
from the ground-state Q value of clusters defined with the Hill
algorithm. The figure is taken from [50].

higher temperature that light systems can sustain [36].
In this interpretation, a higher temperature region of the
phase diagram, possibly above the critical point, is ex-
plored in the fragmentation of light systems, and the first-
order phase transition observed in heavy nuclei becomes
a smooth crossover.
As a general remark, the configurational energy fluc-

tuation signal is a very interesting one due to its possi-
ble connection with a heat capacity, but it is also a very
indirect and fragile experimental signal which needs pre-
cise calorimetric measurements, a careful data analysis,
extensive simulations to assess the effect of the different
hypotheses in the event sorting and reconstruction pro-
cedure. Moreover, the different techniques to exclude or
minimize pre-equilibrium and neck emission seem to have
a strong influence in the absolute value of fluctuations.
The evaluation of systematic errors in fluctuation mea-

surements is necessary to achieve a quantitative estima-
tion of fluctuations: some first encouraging results in this
direction have been presented in ref. [40]. The confirma-
tion (or infirmation) of the fluctuation enhancement is cer-
tainly one of the most important challenges of the field in
the next years with third-generations multidetectors.

4 Open questions

The possibility of accessing a thermodynamic information
on the nuclear phase diagram from measured fragment
properties entirely relies on the representation of the sys-
tem at the freeze-out stage as an ideal gas of fragments [25]
in thermal equilibrium. This is true for fluctuation ob-
servables as well as for all other thermodynamic analy-
ses [34,44]. This is an important conceptual point which
is presently largely debated in the heavy-ion community.

Fig. 11. Normalized fluctuations σ2

k/T
2 as a function of energy

for a system of 216 lattice gas particles in the isobar ensemble
at different pressures. Full lines: exact results. Symbols: estima-
tion from the ground-state Q value of Coniglio-Klein clusters.
Dashed lines: as the symbols, but data are sampled in bins of
energy reconstructed from cluster kinetic energies and sizes. λc

gives the critical pressure. The figure is taken from [51].

A first open question concerns the structure of the sys-
tems at the freeze-out stage, i.e. at the time when frag-
ments decouple from each other. Contrary to the ultra-
relativistic regime [52], we do not expect much difference
between the chemical and kinetic decoupling times due to
the small collective motions implied in these low-energy
collisions. We can, therefore, speak at least in a first ap-
proximation of a single freeze-out time. If at this time
the system is still relatively dense, the cluster properties
may be very different from the ones asymptotically mea-
sured, and the question arises [16] as to whether the ener-
getic information measured on ground-state properties can
be taken backward in time up to the freeze-out. Calcula-
tions from classical molecular dynamics [50] show that the
ground-state Q-value is a very bad approximation of the
interaction energy of Hill clusters in dense systems. This
is due both to the deformation of clusters when recognized
in a dense medium through the Hill algorithm, and to the
interaction energy among clusters in dense configurations
where cluster surfaces touch. As a consequence, compara-
ble fluctuations are obtained in the subcritical and super-
critical region of the Lennard-Jones phase diagram. This
result is shown in fig. 10. Calculations in a similar model,
the lattice gas model, show that even in the supercritical
regime the correct fluctuation behavior can be obtained if
both the total energy and the interaction energy are con-
sistently estimated with the same approximate algorithm
as is done in the experimental data analysis [51]. Indeed,
the high value of the estimated configurational energy Q
fluctuations is essentially due to the spurious fluctuation
of the total energy EK + EI obtained when EI is esti-
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Fig. 12. Time evolution of a Lennard-Jones system initially confined in a dense supercritical configuration and freely expanding
in the vacuum at different total energies. Upper part: minimum-spanning-tree (MST) fragment size distribution at different
times. Lower part: average kinetic-energy (full lines), total (lower symbols) and normalized (upper symbols) kinetic-energy
fluctuations, and size of the largest MST cluster (dashed lines). Abnormal fluctuations in these units correspond to Ak & 0.7.
The figure is taken from [53].

mated through Q; such an effect is eliminated if data are
analyzed in bins of EK +Q. This calculation is shown in
fig. 11.
A second related question which needs further work

is the relevance of the equilibrium assumption at freeze-
out. Molecular dynamics models applied to study the time
evolution of the reaction [20,53–55] predict that the de-
coupling between fragment degrees of freedom (freeze-out)
occurs very rapidly during the reaction. At this stage,
however, the configuration is considerably diluted due to
the early presence of collective motions [20]. An example
taken from classical molecular dynamics for an initially
equilibrated compact configuration freely evolving in the
vacuum is shown in fig. 12. At this reaction stage cluster
energies may be well approximated (within a side-feeding
correction) by their asymptotically measured values, but
it is not clear whether this configuration can correspond
to an equilibrium, more precisely whether the hypothesis
of equiprobability of the different charge partitions holds.

5 Conclusions and outlooks

In this paper we have presented a short review of the ex-
perimental as well as theoretical studies of fluctuation ob-
servables of fragments produced in a multifragmentation
heavy-ion reaction. The aim of these studies is the under-
standing of the nature of the nuclear fragmentation transi-
tion as well as the thermodynamic characterization of the
finite-temperature nuclear phase diagram. This vast and
ambitious program is still in its infancy. Many promising

results already exist, but the analyses are not yet conclu-
sive and need to be intensively pursued in the future.
The nuclear fragmentation phenomenon, well doc-

umented by a series of independent experiments [7],
presents many features compatible with a critical phe-
nomenon [10] or a phase transition [9,24,34]. Only a care-
ful study of fluctuation properties will allow to discrimi-
nate between the different scenarii. Even more important,
the phase diagram of finite nuclei is theoretically expected
to present an anomalous thermodynamics [47,48] which
should be characteristic of any non-extensive system un-
dergoing first-order phase transitions in the thermody-
namic limit. Once the difficulties linked to the imperfect
detection and sorting ambiguities will be overcome, fluc-
tuation observables will be a unique tool to quantitatively
study this new thermodynamics with its interdisciplinary
applications [47,48,56].
From the theoretical point of view, the theoretical con-

nections between fluctuations and susceptibilities in the
different statistical ensembles are well established, and
the different experimental constraints can be consistently
adressed by the theory. However, the evaluation of a ther-
modynamics for a clusterized system opens the difficult
theoretical problem of cluster definition in dense quantum
media. To produce quantitative estimations of measurable
fluctuation observables, the pertinence of classical models
has to be checked through detailed comparisons with mi-
croscopic [54] and macroscopic [25] nuclear models.
On the experimental side, multiplicities and size fluctu-

ations agree reasonably well if comparable size fragment-
ing systems are studied, even if the effect of the system
size has to be clarified. Configurational energy fluctuations
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are especially interesting because of their possible connec-
tion with a heat capacity measurement. The methodology
to extract such fluctuations from fragmentation data is
presently under debate; in particular, a careful analysis
of systematic errors is presently undertaken [40]. From a
more conceptual point of view, the influence of the differ-
ent time scales in the reaction dynamics has to be clari-
fied. Configurational energy fluctuations may be subject
to strong ambiguities since they use information from all
the particles of the event, and this information is inte-
grated over the whole reaction dynamics. In this respect,
an interesting complementary observable may be given by
fluctuations of the heaviest cluster size [24,28,57].
To solve the existing ambiguities we need full compar-

isons with a well-defined protocol and consistency checks
between different data sets. The simultaneous measure-
ment of fragment mass and charge on a 4π geometry [49]
will be essential to measure the basic variable of any ther-
modynamic study, namely the deposited energy. No defini-
tive conclusion about the occurrence of a thermodynamic
phase transition and its order can be drawn without this
detection upgrade.
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